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Book Review: Simulated Annealing and 
Boltzmann Machines: A Stochastic 
Approach to Combinatorial Optimization 
and Neural Computing 

Simulated Annealing and Boltzmann Machines: A Stochastic Approach to 
Combinational Optimization and Neural Computing. Emile Arts and Jan 
Korst, Wiley, Interscience, New York, 1989. 

This book is an excellent introduction for mathematicians and physicists to 
the subjects of simulated annealing and Boltzmann machines. Furthermore, 
the discussion of Boltzmann machines provides a rigorous foundation with 
which to penetrate the very trendy subjects of "neural computing" and 
"neural networks." The book is divided into two sections, the first concen- 
trating on the simulated annealing algorithm and the second on aspects of 
Boltzmann machines, especially those pertaining to parallel and neural 
computation. 

The authors motivate the simulated annealing algorithm as a method 
for solving problems of combinatorial optimization. These problems are 
generally considered to be very hard to solve, and in particular, all of the 
examples of combinatorial optimization problems in the book are from the 
class of NP-complete problems. The simulated annealing algorithm is then 
presented, using the conceptual analogy of the algorithm to metallurgical 
annealing. The presentation is very general and only requires a minimiza- 
tion problem with a well-defined objective function C over a finite and 
discrete solution space that has a neighborhood structure. Within this 
mathematical framework the simulated annealing algorithm consists of 
proposing a neighboring configuration. The proposal is accepted if it either 
decreases the objective function or, when the proposed configuration 
increases the objective function, a uniformly distributed random number 
chosen in [0, 1] is greater than the value of e -~c/c. This is essentially the 
well-known Metropolis algorithm, where the constant C in the Boltzmann 
factor is the simulated annealing analog of temperature. This procedure 
augmented with a sequence of c values going to zero, making certain that 
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the algorithm reaches the equivalent of thermal equilibrium at every value 
of c, constitutes the simulated annealing algorithm. The decreasing 
sequence of c values is called a cooling schedule. 

The discussion of the simulated annealing algorithm then continues 
with practical considerations, implementations of the algorithm for the NP- 
complete examples, analytic results, and numerical examples. There seems 
to be an extensive body of results concerning the global asymptotic con- 
vergence properties of the algorithm and two very important results are 
presented in great detail. The first is an asymptotic result with the assump- 
tion of thermal equilibrium at each value of c. The second, more impressive 
result, shows that the global asymptotic convergence of the algorithm with 
a given cooling schedule is possible with only a finite-number of iterations 
at each value of c. This result is based on the analysis of the simulated 
annealing algorithm as a finite-state Markov chain, and requires only 
elementary results from the theory of finite-state Markov processes. 

The extensive discussion of the simulated annealing algorithm serves 
as strong motivation for the second section, a discussion of Boltzmann 
machines. A Boltzmann machine is an interconnected network of elements 
whose state is either 0 or 1. These binary units are bidirectionally connec- 
ted with strengths that can take arbitrary positive or negative values. 
Implicit in a set of connection strengths is the consensus function of the 
Boltzmann machine, which is the sum of the product of the connection 
strengths and the states of the interconnected units. The computational 
task of the Boltzmann machine, is to maximize its consensus function. This 
is accomplished with an algorithm analogous to simulated annealing. A 
unit is chosen for a proposed change in state. This change is accepted if 
either the consensus function increases or if I/(1 + e -~c/C) is smaller than 
a chosen uniformly distributed random number in the interval [0, 1]. 
Decreasing values of c are then used to "cool" the Bottzmann machine into 
a near optimal configuration. 

This definition of Boltzmann machines shows the clear analogy with 
the simulated annealing algorithm, and so the homologous asymptotic con- 
vergence results for Boltzmann machines that are presented next are pre- 
dictable. One can augment the definition of the Boltzmann machine to 
allow the choice of proposed units for transition to be done in a concurrent 
manner for implementation on a parallel device. However, asymptotic 
convergence for these parallel Boltzmann machines is still an open 
problem. Implementational and numerical aspects of Boltzmann machines 
for the solution of the examples from combinatorial optimization are then 
presented, concluding the discussion of optimization. 

The parallel implementation of the Boltzmann machines leads very 
naturally into the subject of neural computing. First the problem of 
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classification for Boltzmann machines is addressed. Here a simple example 
of the classification of digits in a digital display is carefully presented. Its 
implementation is with a Boltzmann machine with two layers of units, an 
input and an output layer. The famous problem of classification for the 
exclusive-or function is then shown to confound a simple two-layered 
Boltzmann machine, motivating the consideration of hidden units. With 
hidden units come the ambiguities in the assignment of connection 
strengths in Boltzmann machines. This leads to the consideration of 
learning algorithms for iteratively determining connection strengths that 
will result in a consensus function with local maxima which correspond to 
the desired classification groupings. 

A very elegant theorem for learning in a Boltzmann machine is then 
described. Given a current equilibrium distribution of local maxima q' and 
a desired equilibrium q, the divergence function D(qlq') is defined. Mini- 
mization of this function in the space of connection strengths is shown to 
be equivalent to determining the optimal set of connection strengths for the 
desired equilibrium distribution. In the special case where the Boltzmann 
machine has no hidden units, it is proven that D(qlq') is a strictly convex 
function with a single local minimum. This implies that a steepest descent 
approach to the minimization of the divergence function is guaranteed to 
converge. If a Boltzmann machine does have hidden units, D(qlq') is no 
longer guaranteed to be convex, and heuristic approaches to its minimiza- 
tion are presented. 

All in all, the presentation of the material in this book is very balan- 
ced. Rigorous results are presented, and an indication of what the authors 
believe to be the important open problems in the field are included. The 
Boltzmann machine serves as a fairly rigorous intellectual springboard into 
the much less rigorous field of neural networks and neural computing. I 
found this book an intellectually comforting introduction to this seemingly 
chaotic new discipline which clearly marks out the firm ground and the 
quicksand. 
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